

Applied Research

Design of Experiment - Tire Aging

W. Riley Garrott
Jamie MacIsaac
May 1, 2003

Presentation Topics

- Introduction
- Project Design
- Issues
- Discussion

Introduction

Statistics on Tires in the Field

- Number of tires on the road in America in 1999 non-commercial vehicles (cars, LT, SUVs, etc.)
 - 822 million
- Number of tires shipped in 2001:
 - 300 million (822,000/day)
- Average use 2001:
 - 43,000 miles / 3.6 years
 - + Note: Large distributions in average use

Primary Objective

- NHTSA wants reasonable assurance that all tires covered by the FMVSS 139 will wear out (have less than 3/32nds tread left) before they suffer a safety related failure:
 - Tread Separation
 - Sidewall Failure (Blowout)
 - Bead Failure

Tire Aging Test Background

- The agency reserved the right to revise tests or incorporate additional tests in the proposed FMVSS 139
- The agency has identified the need to test tires that have been subjected to the equivalent of many years of use
- Currently, there exist no industry accepted accelerated tire aging method

Background (continued)

- Applied Research was given until April, 2004 (15 months from now) to recommend an aged tire endurance test
- There is not enough time to complete a multiparameter tire aging test development program
- Applied Research will evaluate known methods and target a single set of test parameters for the new oven/mechanical test

Project Design

Tire Aging Project Basics

Quantify How Tires Age in the Field

Evaluate Proposed Tire Aging Methods

Develop an Aged Tire Endurance Test

Tentative Tire Aging Project Schedule

MIGGL WILLI HIGUSLIY / FIOJECL FIAIHING 10/02 - 1/0	Meet with Industry	/ / Project Planning	10/02 - 1/03
---	---------------------------	----------------------	--------------

Tire Collection in Arizona 2/03 - 3/03

Analysis & Testing of Field Tires 3/03 - 10/03

Evaluation of Tire Aging Methods 3/03 - 10/03

Aged Tire Endurance Test Development 10/03 - 3/04

Tire Collection from the Field

- Proposed collection area: Phoenix, Arizona
 - Average annual temperature 72.9°F (22.7°C)
 - The State of Arizona had the highest per capita
 Firestone tire tread separation rate in the U.S.
 - Population: 1,210,420 (7th largest U.S. city large pool of vehicles)

Tire Collection – 8 Different Categories

- Original Equipment
 - P-metric tires
 - +Compact car
 - +Mid-size car
 - +Mid-size SUV
 - +Large SUV

- Replacement Brand
 - P-metric tires
 - +Mid-size car
 - +Full-size car
 - +Large SUV
 - Light Truck
 - + Load Range E

Tire Selection Requirements

- Production availability
 - In production 1998 to current
- Popularity
 - OE: Must have been OE on at least one US vehicle
 - Replacement: Must be available at a large tire retailer
- Design legacy
 - No 'major' design changes from 1998 current
- Alternate tire recommendations must be of same size and application

Collection Strategy

- Send out letters in advance of tire teams with instructions and details on the tires we plan to collect
- Allow the stores to contact customers with these tires and offer them a new set of tires for free
- Make only as many service appointments as is necessary for each model

Tires Collected from the Field

Field Collection

- Collect 720 tires off of Phoenix area vehicles
 - + 60 of each tire (12 different models)
 - + 20 in each age group 1: 97-98, 2: 99-00, 3: 01-03
- Assume 192 / 720 tires fail inspection (repairs, abuse...)
- Laboratory Analysis 144 tires*
- FMVSS 139 Endurance Test 144 tires*
- Remainder of the tires used for tire aging test development
- Data to be released after analysis by NHTSA

OE Tire Collection List

Type	Use	Size	Load Index	Speed Rating	Brand	Model	OE Brand	OE Vehicle
P-metric	Compact car	P185/65R14	85	Н	Hankook	H406	Daewoo Hyundai Kia	
P-metric	Mid-size car	P195/65R15	89	S	BFGoodrich	Touring T/A	Chevy	Cavalier
P-metric	Mid-size car	P205/65R15	92	V	Goodyear	Eagle GA	Lexus	ES300
P-metric	Mid-size SUV	P235/75R15	108	S	Michelin	LTX M/S		E 150 Van Ram Van 1500
P-metric	Large SUV	P265/75R16	114	S	Firestone	Wilderness AT	,	Silverado/Tahoe Sierra/Yukon
Metric	SUV	255/55R18	109	Н	Goodyear	Wrangler HP		Range Rover 4.6 HSE / Discovery

Replacement Tire Collection List

Type	Use	Size	Load Index	Speed Rating	Brand	Model
P-metric	Mid-size car	P205/60R15	90	Н	Kumho	ECSTA HP4
P-metric	Mid-size car	P205/65R15	92	S	Continental	Touring Contact A/S
P-metric	Full-size car	P205/70R15	95	S	Yokohama	Avid Touring
Metric	SUV	255/65R16	109	Н	General	Grabber ST A/S
P-metric	Full-size car	P235/45R17	94	V	Pirelli	P6 FourSeason
LT	Full-size LT	LT245/75R16/E	120	Q	Pathfinder	ATR A/S OWL

Phase I Test Tires

Type	Size	Load Index	Speed Rating	Brand	Model
P-metric	P195/65R15	89	S	BFGoodrich	Touring T/A
P-metric	P205/65R15	92	V	Goodyear	Eagle GA
P-metric	P235/75R15	108*	S	Michelin	LTX M/S
Metric	255/65R16	109	Н	General	Grabber ST A/S
P-metric	P265/75R16	114	S	Firestone	Wilderness AT
LT	LT245/75R16/E	120**	Q	Pathfinder	ATR A/S OWL

^{*}Extra Load / **Load Range E

- 12 Tire Models Collected From The Field (Phoenix)
- 6 Tire Models Will Be Tested In Phase I

Laboratory Analysis

Test	Replicates per Tire	Skim Rubber	Belt Edge Rubber	Tread	Sidewalls	Bead Area
Peel strength skim & wedge: Radial peel SS and radial peel OSS	2	*	*			
Total crosslink density	5	*	*	*	*	*
Fixed oxygen by weight	3	*	*	*		
Tensile test						
Strain ratio	5	*	*			
Elongation at break (ultimate)	5	*	*			
100% modulus (room temp)	5	*	*			
Extension ratio at break	5	*	*			
Tensile strength	5	*	*			
Shore hardness	5		*	*		
Micro hardness	5	*				

Test	Replicates per Tire	Skim Rubber	Belt Edge Rubber	Tread	Sidewalls	Bead Area	Shoulder Radial Scan	Bead Radial Scan
Crosslink density distribution	3	*	*	*	*	*		
Indentation modulus	1						*	*